This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% P is a matrix of [x,y] points | |
P=[x,y]; | |
K = convhulln(P); | |
K = unique(K(:)); | |
PK = P(K,:)'; | |
[d N] = size(PK); | |
Q = zeros(d+1,N); | |
Q(1:d,:) = PK(1:d,1:N); | |
Q(d+1,:) = ones(1,N); | |
% initializations | |
count = 1; | |
err = 1; | |
u = (1/N) * ones(N,1); % 1st iteration | |
tolerance=.01; | |
while err > tolerance, | |
X = Q * diag(u) * Q'; % X = \sum_i ( u_i * q_i * q_i') is a (d+1)x(d+1) matrix | |
M = diag(Q' * inv(X) * Q); % M the diagonal vector of an NxN matrix | |
[maximum j] = max(M); | |
step_size = (maximum - d -1)/((d+1)*(maximum-1)); | |
new_u = (1 - step_size)*u ; | |
new_u(j) = new_u(j) + step_size; | |
count = count + 1; | |
err = norm(new_u - u); | |
u = new_u; | |
end | |
% (x-c)' * A * (x-c) = 1 | |
% It computes a dxd matrix 'A' and a d dimensional vector 'c' as the center | |
% of the ellipse. | |
U = diag(u); | |
% the A matrix for the ellipse | |
A = (1/d) * inv(PK * U * PK' - (PK * u)*(PK*u)' ); | |
% matrix contains all the information regarding the shape of the ellipsoid | |
% center of the ellipse | |
c = PK * u; | |
[U Q V] = svd(A); | |
r1 = 1/sqrt(Q(1,1)); | |
r2 = 1/sqrt(Q(2,2)); | |
v = [r1 r2 c(1) c(2) V(1,1)]'; | |
% get ellipse points | |
N = 100; % number of points on ellipse | |
dx = 2*pi/N; % spacing | |
theta = v(5); %orinetation | |
Rot = [ [ cos(theta) sin(theta)]', [-sin(theta) cos(theta)]']; % rotation matrix | |
Xe=zeros(1,N); Ye=zeros(1,N); % pre-allocate | |
for i = 1:N | |
ang = i*dx; | |
x = v(1)*cos(ang); | |
y = v(2)*sin(ang); | |
d1 = Rot*[x y]'; | |
Xe(i) = d1(1) + v(3); | |
Ye(i) = d1(2) + v(4); | |
end |
1 comment:
Awesome blog! A link for the similar implementation that may interest you:
http://www.mathworks.com/matlabcentral/fileexchange/13844-plot-an-ellipse-in-center-form
http://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
Post a Comment